

Journal of Organometallic Chemistry 563 (1998) 23-29

Systematic syntheses of $[Hg\{M(CO)_4\}_2]^{2-}$, $[Hg\{M(CO)_4\}]_x$ (M = Fe, Ru, Os), and structures of $[Hg\{M(CO)_4\}_2]^{2-}$ (M = Ru, Os)

Sung-Ho Chun, Edward A. Meyers, Fu-Chen Liu, Soyoung Lim, Sheldon G. Shore *

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA

Received 4 September 1997; received in revised form 11 February 1998

Abstract

The $[Hg\{M(CO)_4\}_2]^{2^-}$ (M = Fe, Ru, Os) anions were prepared by the reaction of $K_2M(CO)_4$ (M = Fe, Ru, Os) with HgCl₂ in a 2:1 molar ratio in THF in high yields. The complexes, $K_2[Hg\{M(CO)_4\}_2]$ (M = Ru, Os) are thermally stable. $K_2[Hg\{Ru(CO)_4\}_2]$ decomposes at ca. 170°C, while $K_2[Hg\{Os(CO)_4\}_2]$ decomposes at ca. 220°C. The structures of $[PPN]_2[Hg\{Ru(CO)_4\}_2]$ and $[Ph_3MeP]_2[Hg\{Os(CO)_4\}_2]$ were determined from single crystal X-ray diffraction analyses. The anions $[Hg\{M(CO)_4\}_2]^{2^-}$ (M = Ru, Os), are isostructural with $[Hg\{Fe(CO)_4\}_2]^{2^-}$. These consist of two $M(CO)_4$ units, trigonal-bipyramidal fragments, joined at apical sites by a mercury atom in a linear M-Hg-M array with a staggered arrangement of the three equatorial CO's of the $M(CO)_4$ units. Crystal data for $[PPN]_2[Hg\{Ru(CO)_4\}_2] \cdot 2CH_3CN$: space group $P\bar{1}$, a = 12.615(2), b = 13.374(2), c = 13.822(2) Å, $\alpha = 104.97(1)$, $\beta = 106.18(1)$, $\gamma = 108.92(1)^\circ$, V = 1956.4(6) Å³, Z = 1, mol. wt. = 1786.15, $\rho = 1.481$ g cm⁻³, $\mu = 24.6$ cm⁻¹ for Mo-K_{α} radiation. $R_f = 0.022$, $R_{wf} = 0.028$ for 5261 independent reflections with $I \ge 3\sigma(I)$. Crystal data for $[Ph_3MeP]_2[Hg\{Os(CO)_4\}_2]$: space group $P\bar{1}$, a = 11.437(2), b = 13.532(2), c = 14.698(2) Å, $\alpha = 83.98(2)$, $\beta = 83.88(2)$, $\gamma = 78.41(2)^\circ$, V = 2207.5(6) Å³, Z = 2, mol. wt. = 1359.68, $\rho = 2.046$ g cm⁻³, $\mu = 93.35$ cm⁻¹ for Mo-K_{α} radiation. $R_f = 0.0327$, $R_{wR_2} = 0.0832$ for 5375 independent reflections with $I \ge 3\sigma(I)$. When a 1:1 molar ratio of Na₂[M(CO)₄] (M = Fe, Ru, Os) and HgCl₂ was employed the polymeric complexes [Hg\{M(CO)_4\}_2]_were obtained. The polymers are stable in air, but they are not soluble in common organic solvents and in water. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: $[Hg\{M(CO)_4\}]_x$; $[Hg\{M(CO)_4\}_2]^{2-}$; Systematic syntheses

1. Introduction

Transition metal-mercury complexes with a linear M-Hg-M (M = transition metal) arrangement have been studied for several decades [1–6]. These mercury bridged complexes have been utilized as synthons in organometallic syntheses [2,3,7]. The complex $[Hg{Fe(CO)_4}_2]^2$ has been prepared by other laboratories [4,5], either under high temperature with a prolonged reaction period (Reaction (1)) or by using reducing reagents such as sodium amalgam (Reaction (2).

$$K_{2}[Fe_{2}(CO)_{8}] + Hg \underbrace{\overset{\text{THF}/100 - 120C}{4 - 6 \text{ weeks}}} K_{2}[Hg\{Fe(CO)_{4}\}_{2}] \quad (1)$$

[HgFe(CO)_{4}]_{X} + Na/Hg \underbrace{\overset{\text{THF}}{18 - 20 \text{ h}}} Na_{2}[Hg\{Fe(CO)_{4}\}_{2}] \quad (2)

Unfortunately, these conditions are not practical for the synthesis of Ru and Os analogs since the starting materials $K_2[Ru_2(CO)_8]$ and $K_2[Os_2(CO)_8]$ are not easily prepared [8].

We describe here a simplified synthesis of $[Hg{Fe(CO)_4}_2]^{2-}$ and adapt this procedure to the systematic preparation of the related Group VIII dianions $[Hg{Ru(CO)_4}_2]^{2-}$ and $[Hg{Os(CO)_4}_2]^{2-}$, the single crystal X-ray structures of which are also reported here. Additionally we report systematic syntheses of the polymeric species $[Hg{M(CO)_4}]_x$ (M = Fe, Ru, Os).

^{*} Corresponding author. Fax: +1 614 2921685.

⁰⁰²²⁻³²⁸X/98/\$19.00 \bigcirc 1998 Elsevier Science S.A. All rights reserved. PII S0022-328X(98)00535-X

2. Results and discussion

Reactions of HgCl₂ with the metal carbonylate anions, $[M(CO)_4]^{2-}$ (M = Fe, Ru, Os) in THF gave the desired products in yields > 80% (Reaction 3). The reaction of K₂[Fe(CO)₄] with HgCl₂ was complete in 30 min at room temperature (r.t.). However, the reactions of K₂[Ru(CO)₄]

$$HgCl_{2} + 2K_{2}[M(CO)_{4}] \xrightarrow{\text{THF}} K_{2}[Hg\{M(CO)_{4}\}_{2}] + 2KCl$$

$$M = Fe, Ru, Os$$
(3)

and $K_2[Os(CO)_4]$ with HgCl₂ were slower, requiring 2 h at r.t. for the preparation of $K_2[Hg{Ru(CO)_4}_2]$ and 3 h at 60°C for the preparation of $K_2[Hg{Os(CO)_4}_2]$. The color of $K_2[Hg{Ru(CO)_4}_2]$ is orange-yellow and that of $K_2[Hg{Os(CO)_4}_2]$ is yellow. Both compounds are air and moisture sensitive. The IR spectra (Fig. 1) of these complexes in the CO stretching region are consistent with that of $K_2[Hg{Fe(CO)_4}_2]$.

Sosinsky and co-workers found that the sodium salt, Na₂[Hg{Fe(CO)₄}₂], is stable up to its melting point, 170°C [5]. The potassium salts of the complexes, K₂[Hg{M(CO)₄}₂] (M = Ru, Os), are stable likewise; K₂[Hg{Ru(CO)₄}₂] decomposed at ca. 170°C and K₂[Hg{Os(CO)₄}₂] decomposed at ca. 220°C.

Fig. 1. IR spectra of $K_2[Hg\{M(CO)_4\}_2]$, M = Fe, Ru, Os, in the CO stretching region (in THF).

Fig. 2. IR spectra of $[Hg{M(CO)_4}]_x$, M = Fe, Ru, Os, in the CO stretching region (in nujol mull).

We found that the reaction of $HgCl_2$ with $Na_2[M(CO)_4]$ (M = Fe, Ru, Os) in a 1:1 molar ratio in THF produced the polymeric complexes $[Hg\{M(CO)_4]_x$ (Reaction 4), which are essentially

$$HgCl_{2} + Na_{2}[M(CO)_{4}] \xrightarrow{THF} [Hg\{M(CO)_{4}\}]_{X} + 2NaCl$$

$$M = Fe, Ru, Os$$
(4)

insoluble in common organic solvents [9–12]. The nujol mull IR spectra (Fig. 2) of the yellow precipitates in the CO stretching region are consistent with that reported for $[Hg{Fe(CO)_4}]_x$. The iron derivative $[Hg{Fe(CO)_4}]_x$ was first synthesized early in the 20th century from the reaction of Fe(CO)₅ and HgSO₄ in 10% H₂SO₄ at r.t. [9]. However, there has been no report of syntheses of analogous polymeric complexes $[Hg{M(CO)_4}]_x$ (M = Ru, Os). The highly unstable nature of Ru(CO)₅ and Os(CO)₅ preclude procedures that directly parallel the published synthesis of $[Hg{Fe(CO)_4}]_x$.

For crystal growing purposes, potassium salts were converted to $[PPN]_2[Hg{Ru(CO)_4}_2]$ and $[Ph_3MeP]_2$ $[Hg{Os(CO)_4}_2]$ through metathesis reactions in CH_2Cl_2 with [PPN]Cl and $[Ph_3MeP]Br$, respectively. The CO stretching frequencies in the IR spectra of these complex cation salts occur at ca. 30 cm⁻¹ higher values than in the potassium salts. This shift is attributed to diminished interaction (ion-pairing) of the complex positive cations with the anion's carbonyl oxygens compared with the interactions of the potassium cations with the anion's [13].

Crystals of $[PPN]_{2}[Hg{Ru(CO)_{4}}_{2}]$ were grown in concentrated CH₃CN solution in a refrigerator at 4°C. Crystals of $[Ph_3MeP]_2[Hg{Os(CO)_4}_2]$ were grown in a CH₂Cl₂/hexane solution in a refrigerator at 4°C by a vapor diffusion method. The ORTEP diagrams for $[Hg{Ru(CO)_4}_2]^{2-}$ and $[Hg{Os(CO)_4}_2]^{2-}$ are provided in Fig. 3(a) and (b). Crystallographic data for both compounds are given in Table 1. Atomic coordinates (Å) and isotropic thermal displacement parameters ($Å^2 \times 10^3$) with ESD's and selected interatomic distances and interbond angles are given in Tables 2-5. Both $[Hg{Ru(CO)_4}_2]^{2-}$ and $[Hg{Os(CO)_4}_2]^{2-}$ are isostructural with $[Hg{Fe(CO)_4}_2]^2$. These consist of two $M(CO)_4$ units, trigonal-bipyramidal fragments, joined at apical sites by a mercury atom in a linear M-Hg-M array with a staggered arrangement of the three equatorial COs of the M(CO)₄ units. The anion $[Hg{Ru(CO)_4}_2]^{2-}$ has a crystallographically imposed center of symmetry at the Hg position. Therefore an Ru-Hg-Ru angle of 180° is dictated. For the $[Hg{Os(CO)_4}_2]^{2-}$ anion, the Os-Hg-Os angle is

Fig. 3. (a) ORTEP diagram of $[Hg{Ru(CO)_4}_2]^2$ showing 50% probability ellipsoids; (b) ORTEP diagram of $[Hg{Os(CO)_4}_2]^2$ showing 50% probability ellipsoids.

(b)

Table 1

 $Crystallographic data for [PPN]_2[Hg{Ru(CO)_4}_2] \cdot 2CH_3CN \ (1) \\ and [Ph_3MeP]_2[Hg{Os(CO)_4}_2] \ (2)$

	(1)	(2)
Chemical formula	$C_{84}H_{66}N_4P_4O_8H$	$\mathrm{C}_{46}\mathrm{H}_{36}\mathrm{O}_{8}\mathrm{Hg}\mathrm{Os}_{2}\mathrm{P}_{2}$
Molecular weight	1786.15	1359.68
Crystal Description	Orange	Light orange
Crystal size (mm)	0.40×0.35	$0.35 \times 0.30 \times 0.50$
	$\times 0.60$	
Crystal system	Triclinic	Triclinic
Space Group	$P\overline{1}$	$P\overline{1}$
a (Å)	12.615(2)	11.437(2)
b (Å)	13.374(2)	13.532(2)
<i>c</i> (Å)	13.822(2)	14.698(2)
α (°)	104.97(1)	83.98(2)
β (°)	106.18(1)	83.88(2)
γ (°)	108.92(1)	78.41(2)
Volume (Å ³)	1956.4(6)	2207.5(6)
Ζ	1	2
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.481	2.046
Absorption coefficient (cm ⁻ 1)	24.6	93.35
Wavelength (Å)	$Mo-K_{\alpha}$ (0.710 73)	Mo- K_{α} (0.710 73)
Temperature (°C)	-60	-60
Structure solution method	MULTAN 11/ 82	SHELXS86
Data collected (h, k, l)	$+h, \pm k, \pm l$	$+h, \pm k, \pm l$
Scan type	$\omega/2\theta$	$\omega/2\theta$
2θ limit (°)	$4 \le 2\theta \le 45$	$4 \le 2\theta \le 45$
Independent reflections	5261	5375
Data/restraints/parameters	5261/0/467	5375/0/532
R _f	0.022	0.0327
R_w/wR_2	0.028 ^a	0.0832 ^b
	71/2	

$$R_{w} \left[\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2} \right]^{1/2} \quad R_{f} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|$$

Refined on *F*.

^b Refined on F^2 .

175.96(2)°. Ru–C–O and Os–C–O angles are close to 180°, C_{ap} –Ru–Hg or C_{ap} –Os–Hg are ca. 176.0(1) and 172.3(2)°; those of C_{ap} –Ru– C_{eq} and C_{ap} –Os– C_{eq} are 97.8 and 97.7° on average; C_{eq} –Ru– C_{eq} and C_{eq} –Os– C_{eq} angles are 118.1 and 118.3° on average, respectively. The Hg–Ru and Hg–Os distances are 2.6638(3) and 2.6908(3) Å which as expected are slightly longer than the reported Hg–Fe distance, 2.522 Å [5].

3. Experimental

All manipulations were carried out on a standard high-vacuum line or in a dry-box under an inert gas atmosphere [14]. THF and Et_2O were vacuum distilled into storage bulbs that contained sodium–benzophenone ketyl and were equipped with Kontes Teflon stopcocks. CH₃CN and CH₂Cl₂ were dried over P₄O₁₀ with continuous stirring for 5 days followed by vacuum

H9C

H9D

H9E

H9F

H10B

H10C

H10D

H10E

H10F

0.2820

0.3191

0.1598

-0.0377

-0.2819

-0.3483

-0.2784

-0.1474

-0.0865

Table 2 Atomic coordinates (Å) and isotropic thermal displacement parameters ($Å^2 \times 10^3$) with ESD's for [PPN]₂[Hg{Ru(CO)₄}₂]·2CH₃CN

Atom	X	у	Ζ	В
Hg	0.000	0.000	0.000	3.183(4)
Ru	0.09323(2)	0.10920(2)	0.11725(2)	2.556(6)
O1	-0.2065(2)	0.2180(2)	0.2566(2)	5.11(7)
O2	-0.0171(3)	0.2903(2)	0.0221(2)	6.09(8)
O3	0.1020(3)	0.1027(3)	0.3020(2)	6.23(9)
O4	-0.3316(3)	-0.1015(3)	-0.0337(3)	6.3(1)
C1	-0.1623(3)	0.1786(3)	0.2042(3)	3.29(8)
C2	-0.0442(3)	0.2216(3)	0.0572(3)	3.58(8)
C3	0.0300(3)	0.1049(3)	0.2312(3)	3.81(9)
C4	-0.2399(3)	-0.0246(3)	0.0224(3)	3.81(9)
PI	-0.37596(7)	0.31101(6)	-0.29774(6)	2.08(2)
P2	-0.14563(7)	0.36599(6)	-0.33213(6)	2.10(2)
NI N2	-0.2368(2)	0.3430(2)	-0.2/32(2)	2.52(6)
NZ CEA	1.2088(4)	-0.7451(4)	-1.2986(4)	8.1(2)
C5R	-0.3942(3)	0.4339(2) 0.4200(2)	-0.2203(2)	2.43(7)
C5C	-0.4930(3) 0.5075(4)	0.4200(3) 0.5144(4)	-0.2000(3) 0.1465(4)	4.2(1) 5.7(1)
CSD	-0.3075(4) -0.4226(4)	0.5144(4) 0.6225(3)	-0.1403(4) -0.1194(4)	5.7(1) 5.1(1)
C5E	-0.3237(4)	0.0223(3) 0.6372(3)	-0.1469(3)	45(1)
C5E	-0.3085(3)	0.5430(3)	-0.1998(3)	3 43(8)
C6A	-0.4728(3)	0.2584(3)	-0.4403(2)	2.42(7)
C6B	-0.4850(3)	0.1559(3)	-0.5102(3)	3.17(8)
C6C	-0.5498(4)	0.1169(4)	-0.6206(3)	4.2(1)
C6D	-0.6032(4)	0.1792(4)	-0.6625(3)	4.8(1)
C6E	-0.5927(4)	0.2801(4)	-0.5948(3)	4.8(1)
C6F	-0.5277(3)	0.3205(3)	-0.4830(3)	3.60(8)
C7A	-0.4319(3)	0.2021(2)	-0.2476(2)	2.37(7)
C7B	-0.3498(3)	0.1916(3)	-0.1644(2)	2.64(7)
C7C	-0.3924(3)	0.1154(3)	-0.1178(3)	3.51(9)
C7D	-0.5151(4)	0.0496(3)	-0.1540(3)	4.2(1)
C7E	-0.5963(3)	0.0592(3)	-0.2370(3)	4.3(1)
C7F	-0.5551(3)	0.1350(3)	-0.2839(3)	3.33(8)
C8A	-0.1432(3)	0.2354(3)	-0.4068(2)	2.54(7)
C8B	-0.1957(3)	0.1370(3)	-0.3880(3)	2.97(8)
C8C	-0.1884(3)	0.0377(3)	-0.4399(3)	3./4(9)
COL	-0.1300(3)	0.0357(3)	-0.5102(3)	4.06(9)
COE	-0.0780(3)	0.1310(3) 0.2322(3)	-0.3289(3) 0.4784(3)	4.20(9)
	-0.0844(3) 0.0054(3)	0.2322(3) 0.4524(2)	-0.4784(3) -0.2272(2)	2.30(6)
C9B	0.0034(3) 0.1011(3)	0.4324(2) 0.5185(3)	-0.2272(2) -0.2461(3)	3.38(8)
C9C	0.1011(3) 0.2170(3)	0.5766(3)	-0.1648(3)	3 75(9)
C9D	0.2387(3)	0.5668(3)	-0.0652(3)	3.25(8)
C9E	0.1447(3)	0.5020(3)	-0.0458(3)	3.50(9)
C9F	0.0275(3)	0.4449(3)	-0.1258(3)	3.15(8)
C10A	-0.1772(3)	0.4358(3)	-0.4243(2)	2.45(7)
C10B	-0.2552(3)	0.3707(3)	-0.5337(2)	2.95(8)
C10C	-0.2935(3)	0.4238(3)	-0.6008(3)	3.96(9)
C10D	-0.2531(3)	0.5404(3)	-0.5615(3)	4.52(9)
C10E	-0.1754(4)	0.6059(3)	-0.4535(3)	4.12(9)
C10F	-0.1383(3)	0.5541(3)	-0.3841(3)	3.14(8)
C11	1.1670(4)	-0.7675(4)	-1.2379(4)	5.6(1)
C12	1.1116(6)	-0.7979(4)	-1.1648(4)	6.9(2)
H5B	-0.5530	0.3452	-0.2185	5.4
H5C	-0.5765	0.5042	-0.1283	7.4
H5D	-0.4320	0.6871	-0.0817	6.7
НЭЕ	-0.2655	0./121	-0.1295	5.9 4.5
НЭГ ЦСР	-0.2393	0.5532	-0.21//	4.5
10B	-0.4482	0.1124	-0.4813	4.1 5.4
110C	-0.3370	0.0408	-0.00/8	5.4 6.3
H6F	-0.0477	0.1321	-0.7300	63
H6F	-0.5210	0.3220	-0.0243 -0.4361	47

Table 2 (Continued)				
Atom	x	у	Ζ	В
H7B	-0.2646	0.2365	-0.1395	3.4
H7C	-0.3362	0.1087	-0.0604	4.6
H7D	-0.5439	-0.0025	-0.1218	5.4
H7E	-0.6813	0.0134	-0.2622	5.7
H7F	-0.6118	0.1409	-0.3413	4.3
H8B	-0.2363	0.1382	-0.3395	3.9
H8C	-0.2238	-0.0292	-0.4268	4.9
H8D	-0.1257	-0.0329	-0.5460	5.3
H8E	-0.0370	0.1294	-0.5770	5.5
H8F	-0.0490	0.2984	-0.4925	4.4
H9B	0.0870	0.5238	-0.3153	4.4

0.6235

0.6050

0 4960

0 4007

0.2900

0.3791

0.5762

0.6867

0.5991

-0.1775

-0.0100

-0.1114

-0.5620

-0.6747

-0.6086

-0.4266

-0.3094

0.0233

4.9

4.2

45

41

3.8

5.1

5.9

5.4

4.1

Positional parameters for hydrogen atoms were calculated based on
an average C-H distance of 0.95 Å and were not refined. Anisotrop-
ically refined atoms are given in the form as: $\exp[-(b_{11}h_2+b_{22}K_2+$
$b_{22}l^2 + b_{12}hk + b_{12}hl + b_{22}kl)$

distillation into storage bulbs. [PPN]Cl (Bis(triphenylphosphino)iminium chloride, Aldrich) and [Ph₃MeP]Br were recrystallized from CH_2Cl_2 /hexane and dried at 100°C under vacuum. Potassium and sodium salts of $[M(CO)_4]^{2-}$ (M = Fe, Ru, Os) were prepared by literature methods with minor modifications [15]. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN and by Oneida Research Services, Whitesboro, NY.

3.1. Preparation of $[PPN]_2[Hg\{Fe(CO)_4\}_2]$

In a dry-box 146.9 mg (0.608 mmol) of $K_2[Fe(CO)_4]$ and 82.5 mg (0.304 mmol) of HgCl₂ were placed in a reaction flask along with a Teflon-coated stir bar. The reaction flask was attached to a vacuum extractor, sealed, and evacuated on the vacuum line. THF (20 ml) was condensed into the reaction flask. The contents was stirred for 30 min at r.t., during which time a yellow solution and a white precipitate were produced. The white precipitate was collected by filtration and was identified as KCl by powder X-ray diffraction. THF was removed under vacuum to give an orange–yellow solid, which was washed in ether to give a yellow powder, 155.7 mg (84% yield). IR (THF, v_{CO}): 1974(vw), 1939(vs), 1862(s, br), 1824(m, br) cm⁻¹.

In a dry-box, 69.6 mg (0.113 mmol) of $K_2[Hg{Fe(CO)_4}_2]$ and 129.5 mg (0.226 mmol) of [PPN]Cl were placed in a flask with a stir-bar. The flask

Table 3 (Continued)

Table 3 Atomic coordinates (Å) and isotropic thermal displacement parameters (Å² × 10³) with ESD's for [Ph₃MeP]₂[Hg{Os(CO)₄}₂]

Atoms	x	у	Z	U
Hg	0.1986(1)	-0.2428(1)	-0.2504(1)	35(1)
Os(1)	-0.0078(1)	-0.1639(1)	-0.1565(1)	29(1)
Os(2)	0.3990(1)	-0.3335(1)	-0.3456(1)	27(1)
P(1)	-0.1055(2)	-0.2995(2)	0.2196(2)	30(1)
P(2)	0.6399(2)	0.2103(2)	-0.2810(2)	31(1)
O(1)	-0.2469(6)	-0.0528(5)	-0.0717(5)	57(2)
O(2)	0.1479(7)	-0.0227(5)	-0.1033(6)	66(2)
O(3)	-0.1193(7)	-0.1692(6)	-0.3365(4)	56(2)
O(4)	0.0264(6)	-0.3698(5)	-0.0443(5)	49(2)
O(5)	0.6094(6)	-0.4656(6)	-0.4478(6)	66(2)
O(6)	0.3937(6)	-0.1347(4)	-0.4652(5)	48(2)
O(7)	0.2117(6)	-0.4502(5)	-0.3921(5)	49(2)
O(8)	0.5121(8)	-0.3427(6)	-0.1641(5)	68(2)
C(1)	-0.1563(8)	-0.0942(6)	-0.1031(6)	33(2)
C(2)	0.0897(9)	-0.0762(6)	-0.1248(6)	44(2)
C(3)	-0.0735(8)	-0.1672(6)	-0.2701(6)	38(2)
C(4)	0.0165(8)	-0.2931(6)	-0.877(5)	32(2)
C(5)	0.5308(9)	-0.4152(6)	-0.4072(6)	41(2)
C(6)	0.3945(7)	-0.2070(6)	-0.4187(6)	32(2)
C(7)	0.2842(8)	-0.4066(6)	-0.3724(5)	32(2)
C(8)	0.4678(8)	-0.3401(7)	-0.2321(7)	43(2)
C(9A)	-0.0086(7)	-0.4105(6)	0.2640(6)	33(2)
C(9B)	0.0257(9)	-0.4929(6)	0.2120(7)	46(2)
C(9C)	0.1095(10)	-0.5755(7)	0.2433(8)	60(3)
C(9D)	0.1542(10)	-0.5757(8)	0.3259(9)	67(3)
C(9E)	0.1202(10)	-0.4947(9)	0.3775(8)	63(3)
C(9F)	0.0393(9)	-0.4112(7)	0.3473(7)	48(2)
C(10A)	-0.2072(7)	-0.3315(6)	0.1480(5)	29(2)
C(10B)	-0.2314(8)	-0.2748(7)	0.0657(6)	40(2)
C(10C)	-0.3167(9)	-0.2966(8)	0.0132(6)	46(2)
C(10D)	-0.3774(9)	-0.3727(7)	0.0427(6)	43(2)
C(10E)	-0.3530(8)	-0.4295(7)	0.1253(6)	41(2)
C(10F)	-0.2675(8)	-0.4095(6)	0.1783(6)	36(2)
C(11A)	-0.1902(7)	-0.2318(6)	0.3115(5)	28(2)
C(11B)	-0.2317(8)	-0.2811(7)	0.3928(6)	40(2)
C(11C)	-0.2988(9)	-0.2265(8)	0.4604(7)	48(2)
C(11D)	-0.3283(9)	-0.1230(8)	0.4465(7)	47(2)
C(11E)	-0.2917(9)	-0.0740(7)	0.3660(7)	50(2)
C(11F)	-0.2218(8)	-0.1277(7)	0.2979(6)	44(2)
C(12)	-0.0130(8)	-0.2219(7)	0.1531(6)	43(2)
C(13A)	0.7761(7)	0.1793(6)	-0.3510(5)	29(2)
C(13B)	0.8664(7)	0.0970(6)	-0.3205(6)	33(2)
C(13C)	0.9718(8)	0.0740(6)	-0.3730(6)	37(2)
C(13D)	0.9946(8)	0.1291(7)	-0.4557(6)	42(2)
C(13E)	0.9078(9)	0.2101(7)	-0.4848(6)	43(2)
C(13F)	0.8007(8)	0.2340(7)	-0.4328(5)	35(2)
C(14A)	0.5778(8)	0.0986(6)	-0.2443(6)	36(2)
C(14B)	0.6139(8)	0.0109(7)	-0.2913(7)	44(2)
C(14C)	0.5639(9)	-0.0716(7)	-0.2618(8)	53(3)
C(14D)	0.4785(10)	-0.0683(8)	-0.1885(8)	62(3)
C(14E)	0.4419(9)	0.0189(8)	-0.1413(8)	57(3)
C(14F)	0.4919(8)	0.1017(7)	-0.1704(6)	43(2)
C(15A)	0.6657(7)	0.2678(6)	-0.1817(5)	28(2)
C(15B)	0.6904(8)	0.2099(6)	-0.0998(6)	36(2)
C(15C)	0.7133(9)	0.2546(8)	-0.0254(7)	49(2)
C(15D)	0.7135(9)	0.3556(8)	-0.0318(7)	51(3)
C(15E)	0.6914(9)	0.4147(7)	-0.1139(8)	52(3)
C(15F)	0.6681(8)	0.3702(6)	-0.1885(6)	40(2)
C(16)	0.5338(9)	0.2982(7)	-0.3454(7)	49(2)
H(9B)	-0.0069(9)	-0.4930(6)	0.1567(7)	70
H(9C)	0.1349(10)	-0.6304(7)	0.2082(8)	89

Atoms	x	у	Ζ	U	
H(9D)	0.2087(10)	-0.6318(8)	0.3473(9)	101	
H(9E)	0.1520(10)	-0.4960(9)	0.4334(8)	94	
H(9F)	0.0169(9)	-0.3558(7)	0.3822(7)	72	
H(10B)	-0.1910(8)	-0.2223(7)	0.0454(6)	60	
H(10C)	-0.3322(9)	-0.2589(8)	-0.0423(6)	69	
H(10D)	-0.4346(9)	-0.3865(7)	0.0079(6)	65	
H(10E)	-0.3942(8)	-0.4815(7)	0.1456(6)	62	
H(10F)	-0.2513(8)	-0.4481(6)	0.2333(6)	54	
H(11B)	-0.2138(8)	-0.3514(7)	0.4014(6)	59	
H(11C)	-0.3243(9)	-0.2596(8)	0.5154(7)	72	
H(11D)	-0.3736(9)	-0.0860(8)	0.4924(7)	70	
H(11E)	-0.3139(9)	-0.0040(7)	0.3567(7)	75	
H(11F)	-0.1963(8)	-0.0939(7)	0.2433(6)	66	
H(12A)	-0.0623(8)	-0.1613(7)	0.1281(6)	65	
H(12B)	0.0319(8)	-0.2583(7)	0.1040(6)	65	
H(12C)	0.412(8)	-0.2044(7)	0.1916(6)	65	
H(13B)	0.8532(7)	0.594(6)	-0.2650(6)	49	
H(13C)	0.10301(8)	0.0201(6)	-0.3529(6)	56	
H(13D)	1.0668(8)	0.1120(7)	-0.4912(6)	63	
H(13E)	0.9222(9)	0.2483(7)	-0.5397(6)	65	
H(13F)	0.7434(8)	0.2884(7)	-0.4532(5)	52	
H(14B)	0.6707(8)	0.0091(7)	-0.3417(7)	65	
H(14C)	0.5880(9)	-0.1306(7)	-0.2917(8)	79	
H(14D)	0.4444(10)	-0.1249(8)	-0.1698(8)	93	
H(14E)	0.3847(9)	0.0205(8)	-0.0913(8)	86	
H(14F)	0.4680(8)	0.1605(7)	-0.1402(6)	65	
H(15B)	0.6915(8)	0.1407(6)	-0.0952(6)	55	
H(15C)	0.7287(9)	0.2155(8)	0.0295(7)	73	
H(15D)	0.7284(9)	0.3854(8)	0.0189(7)	77	
H(15E)	0.6924(9)	0.4836(7)	-0.1184(8)	78	
H(15F)	0.6541(8)	0.4092(6)	-0.2437(6)	59	
H(16A)	0.4600(9)	0.3151(7)	-0.3077(7)	73	
H(16B)	0.5194(9)	0.2680(7)	-0.3984(7)	73	
H(16C)	0.5651(9)	0.3585(7)	-0.3647(7)	73	

Positional parameters for hydrogen atoms were calculated based on an average C–H distance of 0.93 Å and were not refined. Anisotropically refined atoms are given in the form as: $\exp(-2\pi^2[h^2(a^*)^2U(11) + K^2(b^*)^2U(22) + l^2(c^*)^2U(33) + 2klb^*c^*U(23))$

 $+2hla^*c^*U(13)+2hka^*b^*U(12)$]). a^* , b^* , and c^* are reciprocal lattice parameters.

was attached to a vacuum extractor and evacuated. CH_2Cl_2 (20ml) was condensed into the reaction flask. An orange-yellow solution and a white precipitate were obtained after 20 min of stirring. The precipitate was isolated by filtration and identified as KCl by X-ray diffraction. The CH_2Cl_2 was removed under vacuum to give an orange-yellow powder, which was washed in ether to yield 136.1 mg (75% yield) of $[PPN]_2[Hg\{Fe(CO)_4\}_2]$. IR (CH_2Cl_2, v_{CO}) : 2018(vw), 1969(w), 1934(s), 1853(vs, br) cm⁻¹. Anal. Found: C, 60.6; H, 4.22%. $C_{80}H_{60}N_2O_8P_4HgFe_2$ ($[PPN]_2[Hg\{Fe(CO)_4\}_2]$) Calc.: C, 59.6; H, 3.75%.

3.2. Preparation of $[PPN]_2[Hg\{Ru(CO)_4\}_2]$

This compound was prepared and isolated by a procedure similar to that described above. The reaction

Table 4 Selected bond distances (Å) and angles (°) with ESD's for $[PPN]_2[Hg{Ru(CO)_4}_2] \cdot 2CH_3CN$

Hg–Ru	2.6638(3)	Ru-C1	1.897(4)	
Ru–C2	1.913(4)	Ru-C3	1.908(4)	
Ru-C4	1.906(4)	O1-C1	1.154(5)	
O2-C2	1.147(5)	O3–C3	1.148(5)	
O4-C4	1.146(5)	P1-N1	1.576(3)	
Hg-Ru-Cl	176.0(1)	Hg-Ru-C2	84.8(1)	
Hg-Ru-C3	80.1(1)	Hg-Ru-C4	81.9(1)	
Ru-C1-O1	178.2(4)	Ru-C2-O2	178.0(4)	
Ru-C3-O3	177.7(4)	Ru-C4-O4	176.3(4)	
C1-Ru-C2	99.2(2)	C1-Ru-C3	97.9(2)	
C1-Ru-C4	96.3(2)	C2-Ru-C3	118.0(2)	
C2-Ru-C4	115.4(2)	C3–Ru–C4	121.1(2)	

of 188.4 mg (0.694 mmol) of $K_2[Ru(CO)_4]$ with 87.8 mg (0.323 mmol) of HgCl₂ in THF for 2 h produced $K_2[Hg{Ru(CO)_4}_2]$, 207.2 mg (91% yield). IR (THF, v_{CO}): 1981(vw), 1952(vs), 1874(s), 1834(m, br) cm⁻¹. Metathesis with [PPN]Cl produced [PPN]₂[Hg{Ru-(CO)_4}_2] (78% Yield). IR (CH₂Cl₂, v_{CO}): 2034(vw), 2008(vw), 1980(w), 1949(s), 1867(vs) cm⁻¹. Anal. Found: C, 56.7; H, 3.56%. $C_{84}H_{66}N_4P_4O_8HgRu_2$ ([PPN]₂[Hg{Ru(CO)_4}₂] · 2CH₃CN) Calc.: C, 56.5; H, 3.72%.

3.3. Preparation of $[Ph_3MeP]_2[Hg\{Os(CO)_4\}_2]$

This compound was prepared and isolated by a procedure similar to that described above. The reaction of 189.3 mg (0.497 mmol) of $K_2[Os(CO)_4]$ with 67.5 mg (0.249 mmol) of HgCl₂ in THF for 3 h at 60°C produced 190.8 mg (87% yield) of $K_2[Hg\{Os(CO)_4\}_2]$. IR (THF, v_{CO}): 1983(vw), 1956(vs), 1872(s), 1834(m, br) cm⁻¹. Metathesis with [Ph₃MeP]Br produced [Ph₃MeP]₂[Hg{Os(CO)_4}_2] (84% Yield). IR (CH₂Cl₂, v_{CO}): 2043(vw), 1983(m), 1955(s), 1863(vs) cm⁻¹. Anal. Found: C, 40.6; H, 2.60%. C₄₆H₃₆P₂O₈HgOs₂ ([Ph₃MeP]₂[Hg{Os(CO)_4}_2]) Calc.: C, 40.6; H, 2.67%.

3.4. Preparation of $[Hg\{M(CO)_4\}]_x$

Reaction of 214.5 mg (1.0 mmol) of Na₂[Fe(CO)₄] with 277.0 mg (1.0 mmol) of HgCl₂ in THF for 1 h at r.t. produced yellow solution with yellow precipitate. The precipitate was isolated by filtration and washed in water and THF. The yellow precipitate, 346.8 mg (94% yield) was identified to be [HgFe(CO)₄]_x by nujol mull IR spectroscopy. IR (nujol mull, v_{CO}): 2058(sbr, sh), 2045(s), 2015(m), 1979(m), 1949(s), 1916(vs) cm⁻¹.

 $[HgRu(CO)_4]_x$ and $[HgOs(CO)_4]_x$ were prepared by the same method as described above, except that 0.686 mmol of Na₂[Ru(CO)₄] and 0.686 mmol of HgCl₂ were used to prepare $[HgRu(CO)_4]_x$; and 0.3 mmol of Na₂[Os(CO)₄] and 0.3 mmol of HgCl₂ were used to

Table 5 Selected bond distances (Å) and angles (°) with ESD's for $[Ph_3MeP]_2[Hg\{Os(CO)_4\}_2]$

Hg–Os(1)	2.6871(8)	Hg–Os(2)	2.6945(8)
Os(1) - C(1)	1.902(8)	Os(1) - C(2)	1.905(10)
Os(1) - C(3)	1.911(9)	Os(1) - C(4)	1.911(8)
Os(2) - C(5)	1.888(9)	Os(2) - C(6)	1.918(9)
Os(2) - C(7)	1.889(9)	Os(2) - C(8)	1.905(10)
O(1) - C(1)	1.149(10)	O(2)–C(2)	1.162(11)
O(3)-C(3)	1.161(11)	O(4) - C(4)	1.150(10)
O(5)-C(5)	1.165(11)	O(6) - C(6)	1.132(10)
O(7)-C(7)	1.184(10)	O(8)-C(8)	1.162(11)
Os(1)-Hg-Os(2)	175.96(2)	Hg-Os(1)-C(1)	172.3(2)
Hg-Os(1)-C(2)	81.3(3)	Hg-Os(1)-C(3)	83.3(3)
Hg-Os(1)-C(4)	83.4(3)	Hg-Os(2)-C(5)	171.5(3)
Hg-Os(2)-C(6)	86.8(2)	Hg-Os(2)-C(7)	77.7(2)
Hg-Os(2)-C(8)	83.7(3)	Os(1) - C(1) - O(1)	178.9(8)
Os(1) - C(2) - O(2)	178.3(9)	Os(1) - C(3) - O(3)	176.3(8)
Os(1) - C(4) - O(4)	177.1(8)	Os(2) - C(5) - O(5)	177.4(9)
Os(2) - C(6) - O(6)	176.9(7)	Os(2) - C(7) - O(7)	177.5(7)
Os(2) - C(8) - O(8)	178.1(9)	C(1)-Os(1)-C(2)	97.1(4)
C(1) - Os(1) - C(3)	92.1(4)	C(1) - Os(1) - C(4)	104.0(3)
C(2) - Os(1) - C(3)	129.2(4)	C(2) - Os(1) - C(4)	113.4(3)
C(4) - Os(1) - C(3)	112.4(3)	C(5) - Os(2) - C(6)	100.7(3)
C(5) - Os(2) - C(7)	95.4(4)	C(5) - Os(2) - C(8)	96.7(4)
C(6) - Os(2) - C(7)	113.6(3)	C(6) - Os(2) - C(8)	114.3(4)
C(7) - Os(2) - C(8)	127.1(4)		~ /
	. /		

prepare $[HgOs(CO)_4]_x$. 187.8 mg (66.2% yield) of a light brown precipitate of $[HgRu(CO)_4]_x$ and 77.0 mg (51.0%) of a light brown precipitate of $[HgOs(CO)_4]_x$ were obtained. The IR (nujol mull, v_{CO}) spectrum of $[HgRu(CO)_4]_x$: 2069(sbr, sh), 2058(s), 2026(m), 2001(m), 1991(m, sh), 1972(s), 1947(vs) cm⁻¹. Anal. Found: C, 12.28, Ru, 22.93%. $[C_4O_4HgRu]_x$ Calc.: C, 11.61; Ru, 24.43%. The IR (nujol mull, v_{CO}) spectrum of $[HgOs(CO)_4]_x$: 2072(sbr, sh), 2061(s), 2019(w), 1999(m), 1984(m, sh), 1971(vs), 1948(vs) cm⁻¹. Anal. Found: C, 9.62, Hg, 38.72%. $[C_4O_4HgOs]_x$ Calc.: C, 9.55; Hg, 39.90%.

3.5. X-ray structure determination of $[PPN]_2[Hg{Ru-(CO)_4}_2]$ and $[Ph_3MeP]_2[Hg{Os(CO)_4}_2]$

Single crystals were mounted and sealed inside glass capillaries of 0.5 mm diameter. X-ray diffraction data were collected on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo–K_{α} radiation. Unit cell parameters were obtained by a least-square refinement of the angular settings from 25 reflections, well distributed in reciprocal space and lying in the 2 θ range of 24–30°. The diffraction data were corrected for Lorentz and polarization effects, decay, and absorption (empirically from ψ -scan data). Computations were performed on a VAX station 3100 computer using MOLEN [16] for [PPN]₂[Hg{Ru(CO)₄}₂] and an IBM compatible PC using SHELXL 93 [17] for $[Ph_3MeP]_2[Hg{Os(CO)_4}_2]$. Structures were solved using the direct method MULTAN 11/82 and difference Fourier synthesis with analytical scattering factors used throughout the structure refinement [18] for [PPN]₂[Hg-{Ru(CO)₄}₂] and SHELXS86 [19] for [Ph₃MeP]₂[Hg- $\{O_{s}(CO)_{4}\}_{2}$]. After all of the non-hydrogen atoms were located and refined, hydrogen atoms on the cations were placed at calculated positions by assuming ideal geometries with C-H distances of 0.95 Å for $[PPN]_{2}[Hg{Ru(CO)_{4}}_{2}]$ and 0.93 Å for $[Ph_{3}MeP]_{2}[Hg {Os(CO)_4}_2$]. The thermal parameters of the hydrogen atoms were set to $B(H) = 1.3 B(C) \text{ Å}^2$ for [PPN]₂[Hg- $\{Ru(CO)_4\}_2$ and $B(H) = 1.5 B(C) Å^2$ for $[Ph_3MeP]_2$ $[Hg{Os(CO)_4}_2]$. Then, with the positional and thermal parameters of all the hydrogen atoms fixed, the non-hydrogen atoms were refined anisotropically. New hydrogen positions were calculated, and this procedure was repeated until the parameters of the non-hydrogen atoms were refined to convergence (final shift/error \leq 0.03).

Acknowledgements

This work was supported by the National Science Foundation through Grant CHE 94-0123 and CHE 97-00394.

References

- [1] S.V. Dighe, M. Orchin, J. Am. Chem. Soc. 86 (1964) 3895.
- [2] J.M. Burlitch, A. Ferrari, Inorg. Chem. 9 (1970) 563.
- [3] M.L. Katcher, G.L. Simon, Inorg. Chem. 11 (1972) 1651.
- [4] H. Behrens, H.D. Feilner, E. Lindner, D. Uhlig, Z. Naturforsch. b26 (1971) 990.
- [5] B.A. Sosinsky, R.G. Shong, B.J. Fitzgerald, N. Norem, C. O'Rourke, Inorg. Chem. 22 (1983) 3124.
- [6] P. Braunstein, M. Knorr, A. Tiripicchio, M.T. Camellin, Inorg. Chem. 31 (1992) 3685.
- [7] M.N. Bochkarev, N.L. Ermolaev, L.N. Zakharov, Yu. N. Saf'yanov, G.A. Razuvaev, Yu. T. Struchkov, J. Organomet. Chem. 270 (1984) 289.
- [8] N.K. Bhattacharyya, T.J. Coffy, W. Quintana, et al., Organometallics 9 (1990) 2368.
- [9] H. Hock, H. Stuhlmann, Ber. 62 (1929) 431.
- [10] D.M. Adams, D.J. Cook, R.D.W. Kemmitt, Nature 205 (1965) 589.
- [11] W. Beck, K. Noack, J. Organomet. Chem. 10 (1967) 307.
- [12] T. Takano, Y. Sasaki, Bull. Chem. Soc. Jpn. 44 (1971) 431.
- [13] K.E. Inkrott, S.G. Shore, Inorg. Chem. 18 (1979) 2817.
- [14] D.F. Shriver, M.A. Drezdon, The Manipulation of Air-Sensitive Compounds, 2nd ed, Wiley, New York, 1969.
- [15] R.M. Sweet, C.J. Fritchie, R.A. Shunn, Inorg. Chem. 6 (1967) 749.
- [16] MOLEN, an interactive structure solution procedure was used to process X-ray data, to apply corrections, and to solve and refine structures, Enraf-Nonius, Delft, The Netherlands, 1990.
- [17] G.M. Sheldrick, SHELXL 93, Program for the Refinement of Crystal Structure, University of Göttingen, Göttingen, Germany, 1993.
- [18] Atomic scattering factors from: International Tables for X-ray Crystallography, Kynoch, Birmingham, UK, 1974, Vol IV.
- [19] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.