ELSEVIER

# Systematic syntheses of $\left[\operatorname{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-},\left[\operatorname{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x}(\mathrm{M}=\mathrm{Fe}$, $\mathrm{Ru}, \mathrm{Os})$, and structures of $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ 

Sung-Ho Chun, Edward A. Meyers, Fu-Chen Liu, Soyoung Lim, Sheldon G. Shore *<br>Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA

Received 4 September 1997; received in revised form 11 February 1998


#### Abstract

The $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ anions were prepared by the reaction of $\mathrm{K}_{2} \mathrm{M}(\mathrm{CO})_{4}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$, Os$)$ with $\mathrm{HgCl}_{2}$ in a 2:1 molar ratio in THF in high yields. The complexes, $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]\left(\mathrm{M}=\mathrm{Ru}\right.$, Os) are thermally stable. $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ decomposes at ca. $170^{\circ} \mathrm{C}$, while $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ decomposes at ca. $220^{\circ} \mathrm{C}$. The structures of $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and $\left[\mathrm{Ph}_{3} \mathrm{MeP}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]\right.$ were determined from single crystal X-ray diffraction analyses. The anions $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}(\mathrm{M}=$ $\mathrm{Ru}, \mathrm{Os})$, are isostructural with $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$. These consist of two $\mathrm{M}(\mathrm{CO})_{4}$ units, trigonal-bipyramidal fragments, joined at apical sites by a mercury atom in a linear $\mathrm{M}-\mathrm{Hg}-\mathrm{M}$ array with a staggered arrangement of the three equatorial CO's of the $\mathrm{M}(\mathrm{CO})_{4}$ units. Crystal data for $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ : space group $P \overline{1}, a=12.615(2), b=13.374(2), c=13.822(2) \AA$, $\alpha=104.97(1), \beta=106.18(1), \gamma=108.92(1)^{\circ}, V=1956.4(6) \AA^{3}, Z=1, \mathrm{~mol} . \mathrm{wt} .=1786.15, \rho=1.481 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=24.6 \mathrm{~cm}^{-1}$ for Mo $-\mathrm{K}_{\alpha}$ radiation. $R_{\mathrm{f}}=0.022, \quad R_{w f}=0.028$ for 5261 independent reflections with $I \geq 3 \sigma(I)$. Crystal data for $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ : space group $P \overline{1}, a=11.437(2), b=13.532(2), c=14.698(2) \AA, \alpha=83.98(2), \beta=83.88(2), \gamma=78.41(2)^{\circ}$, $V=2207.5(6) \AA^{3}, Z=2$, mol. wt. $=1359.68, \rho=2.046 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=93.35 \mathrm{~cm}^{-1}$ for Mo $-\mathrm{K}_{\alpha}$ radiation. $R_{\mathrm{f}}=0.0327, R_{w R_{2}}=0.0832$ for 5375 independent reflections with $I \geq 3 \sigma(I)$. When a $1: 1$ molar ratio of $\mathrm{Na}_{2}\left[\mathrm{M}(\mathrm{CO})_{4}\right](\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ and $\mathrm{HgCl}_{2}$ was employed the polymeric complexes $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x}$ were obtained. The polymers are stable in air, but they are not soluble in common organic solvents and in water. © 1998 Elsevier Science S.A. All rights reserved.


Keywords: $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x} ;\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-} ;$ Systematic syntheses

## 1. Introduction

Transition metal-mercury complexes with a linear $\mathrm{M}-\mathrm{Hg}-\mathrm{M}$ ( $\mathrm{M}=$ transition metal) arrangement have been studied for several decades [1-6]. These mercury bridged complexes have been utilized as synthons in organometallic syntheses $[2,3,7]$. The complex $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ has been prepared by other laboratories [4,5], either under high temperature with a prolonged reaction period (Reaction (1)) or by using reducing reagents such as sodium amalgam (Reaction (2).

[^0]\[

$$
\begin{equation*}
\mathrm{K}_{2}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{8}\right]+\mathrm{Hg} \xrightarrow[4-6 \text { weeks }]{\text { THF } 100-120^{\circ} \mathrm{C}} \mathrm{~K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right] \tag{1}
\end{equation*}
$$

\]

$$
\begin{equation*}
\left[\mathrm{HgFe}(\mathrm{CO})_{4}\right]_{X}+\mathrm{Na} / \mathrm{Hg} \xrightarrow[18-20 \mathrm{~h}]{\mathrm{THF}} \mathrm{Na}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right] \tag{2}
\end{equation*}
$$

Unfortunately, these conditions are not practical for the synthesis of Ru and Os analogs since the starting materials $\mathrm{K}_{2}\left[\mathrm{Ru}_{2}(\mathrm{CO})_{8}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Os}_{2}(\mathrm{CO})_{8}\right]$ are not easily prepared [8].

We describe here a simplified synthesis of $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ and adapt this procedure to the systematic preparation of the related Group VIII dianions $\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ and $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$, the single crystal X-ray structures of which are also reported here. Additionally we report systematic syntheses of the polymeric species $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$.

## 2. Results and discussion

Reactions of $\mathrm{HgCl}_{2}$ with the metal carbonylate anions, $\left[\mathrm{M}(\mathrm{CO})_{4}\right]^{2-}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ in THF gave the desired products in yields $>80 \%$ (Reaction 3). The reaction of $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ with $\mathrm{HgCl}_{2}$ was complete in 30 min at room temperature (r.t.). However, the reactions of $\mathrm{K}_{2}\left[\mathrm{Ru}(\mathrm{CO})_{4}\right]$
$\mathrm{HgCl}_{2}+2 \mathrm{~K}_{2}\left[\mathrm{M}(\mathrm{CO})_{4}\right] \xrightarrow{\mathrm{THF}} \mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right]+2 \mathrm{KCl}$

$$
\begin{equation*}
\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} \tag{3}
\end{equation*}
$$

and $\mathrm{K}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]$ with $\mathrm{HgCl}_{2}$ were slower, requiring 2 h at r.t. for the preparation of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and 3 h at $60^{\circ} \mathrm{C}$ for the preparation of $\mathrm{K}_{2}\left[\operatorname{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. The color of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ is orange-yellow and that of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ is yellow. Both compounds are air and moisture sensitive. The IR spectra (Fig. 1) of these complexes in the CO stretching region are consistent with that of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$.
Sosinsky and co-workers found that the sodium salt, $\mathrm{Na}_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$, is stable up to its melting point, $170^{\circ} \mathrm{C}$ [5]. The potassium salts of the complexes, $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right](\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$, are stable likewise; $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ decomposed at ca. $170^{\circ} \mathrm{C}$ and $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ decomposed at ca. $220^{\circ} \mathrm{C}$.
$\mathrm{M}=\mathrm{Os}$

Fig. 1. IR spectra of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}_{2}\right], \mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$, Os , in the CO stretching region (in THF).


Fig. 2. IR spectra of $\left[\operatorname{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x}, \mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$, Os, in the CO stretching region (in nujol mull).

We found that the reaction of $\mathrm{HgCl}_{2}$ with $\mathrm{Na}_{2}\left[\mathrm{M}(\mathrm{CO})_{4}\right](\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ in a 1:1 molar ratio in THF produced the polymeric complexes $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right]_{x}\right.$ (Reaction 4), which are essentially
$\mathrm{HgCl}_{2}+\mathrm{Na}_{2}\left[\mathrm{M}(\mathrm{CO})_{4}\right] \xrightarrow{\text { THF }}\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{X}+2 \mathrm{NaCl}$

$$
\begin{equation*}
\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} \tag{4}
\end{equation*}
$$

insoluble in common organic solvents [9-12]. The nujol mull IR spectra (Fig. 2) of the yellow precipitates in the CO stretching region are consistent with that reported for $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right]_{x}\right.$. The iron derivative $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right]_{x}\right.$ was first synthesized early in the 20th century from the reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{HgSO}_{4}$ in $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at r.t. [9]. However, there has been no report of syntheses of analogous polymeric complexes $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right]_{x}(\mathrm{M}=\right.$ Ru , Os). The highly unstable nature of $\mathrm{Ru}(\mathrm{CO})_{5}$ and $\mathrm{Os}(\mathrm{CO})_{5}$ preclude procedures that directly parallel the published synthesis of $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right]_{x}\right.$.
For crystal growing purposes, potassium salts were converted to $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}$ $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ through metathesis reactions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $[\mathrm{PPN}] \mathrm{Cl}$ and $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right] \mathrm{Br}$, respectively. The CO stretching frequencies in the IR spectra of these complex cation salts occur at ca. $30 \mathrm{~cm}^{-1}$ higher
values than in the potassium salts. This shift is attributed to diminished interaction (ion-pairing) of the complex positive cations with the anion's carbonyl oxygens compared with the interactions of the potassium cations with the anion's [13].

Crystals of $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ were grown in concentrated $\mathrm{CH}_{3} \mathrm{CN}$ solution in a refrigerator at $4^{\circ} \mathrm{C}$. Crystals of $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$ were grown in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution in a refrigerator at $4^{\circ} \mathrm{C}$ by a vapor diffusion method. The ORTEP diagrams for $\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ and $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ are provided in Fig. 3(a) and (b). Crystallographic data for both compounds are given in Table 1. Atomic coordinates $(\AA)$ and isotropic thermal displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ with ESD's and selected interatomic distances and interbond angles are given in Tables 2-5. Both $\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ and $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ are isostructural with $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$. These consist of two $\mathrm{M}(\mathrm{CO})_{4}$ units, trigonal-bipyramidal fragments, joined at apical sites by a mercury atom in a linear $\mathrm{M}-\mathrm{Hg}-\mathrm{M}$ array with a staggered arrangement of the three equatorial COs of the $\mathrm{M}(\mathrm{CO})_{4}$ units. The anion $\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ has a crystallographically imposed center of symmetry at the Hg position. Therefore an $\mathrm{Ru}-\mathrm{Hg}-\mathrm{Ru}$ angle of $180^{\circ}$ is dictated. For the $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ anion, the $\mathrm{Os}-\mathrm{Hg}-\mathrm{Os}$ angle is


Fig. 3. (a) ORTEP diagram of $\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ showing $50 \%$ probability ellipsoids; (b) ORTEP diagram of $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]^{2-}$ showing $50 \%$ probability ellipsoids.

Table 1
Crystallographic data for $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ $\operatorname{and}\left[\mathrm{Ph}_{3} \mathrm{MeP}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]\right.$ (2)

|  | (1) | (2) |
| :---: | :---: | :---: |
| Chemical formula | $\begin{aligned} & \mathrm{C}_{84} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{8} \mathrm{H} \\ & \mathrm{gRu}_{2} \end{aligned}$ | $\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{HgOs}_{2} \mathrm{P}_{2}$ |
| Molecular weight | 1786.15 | 1359.68 |
| Crystal Description | Orange | Light orange |
| Crystal size (mm) | $0.40 \times 0.35$ | $0.35 \times 0.30 \times 0.50$ |
|  | $\times 0.60$ |  |
| Crystal system | Triclinic | Triclinic |
| Space Group | $P \overline{1}$ | $P \overline{1}$ |
| $a(\mathrm{~A})$ | 12.615(2) | 11.437(2) |
| $b$ ( $\AA$ ) | 13.374(2) | 13.532(2) |
| $c(\AA)$ | 13.822(2) | 14.698(2) |
| $\alpha\left({ }^{\circ}\right.$ ) | 104.97(1) | 83.98(2) |
| $\beta\left({ }^{\circ}\right.$ | 106.18(1) | 83.88(2) |
| $\gamma\left({ }^{\circ}\right)$ | 108.92(1) | 78.41(2) |
| Volume ( $\AA^{3}$ ) | 1956.4(6) | 2207.5(6) |
| Z | 1 | 2 |
| $D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.481 | 2.046 |
| Absorption coefficient ( $\mathrm{cm}^{-}$ 1) | 24.6 | 93.35 |
| Wavelength ( $\AA$ ) | $\begin{aligned} & \mathrm{Mo}-\mathrm{K}_{\alpha}(0.710 \\ & 73) \end{aligned}$ | $\mathrm{Mo}-\mathrm{K}_{\alpha}(0.71073)$ |
| Temperature ( ${ }^{\circ} \mathrm{C}$ ) | -60 | -60 |
| Structure solution method | $\begin{aligned} & \text { MULTAN 11/ } \\ & 82 \end{aligned}$ | SHELXS86 |
| Data collected ( $h, k, l$ ) | $+h, \pm k, \pm l$ | $+h, \pm k, \pm l$ |
| Scan type | $\omega / 2 \theta$ | $\omega / 2 \theta$ |
| $2 \theta$ limit ( ${ }^{\circ}$ ) | $4 \leq 2 \theta \leq 45$ | $4 \leq 2 \theta \leq 45$ |
| Independent reflections | 5261 | 5375 |
| Data/restraints/parameters | 5261/0/467 | 5375/0/532 |
| $R_{\text {f }}$ | 0.022 | 0.0327 |
| $R_{w} / w R_{2}$ | $0.028{ }^{\text {a }}$ | $0.0832^{\text {b }}$ |
| $R_{w}\left[\sum w\left(\left\|F_{\mathrm{o}}\right\|-\mid F_{\mathrm{c}}\right)^{2} / \sum w\left\|F_{\mathrm{o}}\right\|^{2}\right]^{1 / 2}$ <br> ${ }^{\text {a }}$ Refined on $F$. <br> ${ }^{\mathrm{b}}$ Refined on $F^{2}$. |  |  |

175.96(2) $)^{\circ} . \mathrm{Ru}-\mathrm{C}-\mathrm{O}$ and $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angles are close to $180^{\circ}, \mathrm{C}_{\text {ap }}-\mathrm{Ru}-\mathrm{Hg}$ or $\mathrm{C}_{\text {ap }}-\mathrm{Os}-\mathrm{Hg}$ are ca. 176.0(1) and 172.3(2) ${ }^{\circ}$; those of $\mathrm{C}_{\text {ap }}-\mathrm{Ru}-\mathrm{C}_{\text {eq }}$ and $\mathrm{C}_{\text {ap }}-\mathrm{Os}-\mathrm{C}_{\text {eq }}$ are 97.8 and $97.7^{\circ}$ on average; $\mathrm{C}_{\mathrm{eq}}-\mathrm{Ru}-\mathrm{C}_{\text {eq }}$ and $\mathrm{C}_{\mathrm{eq}}-\mathrm{Os}-$ $\mathrm{C}_{\mathrm{eq}}$ angles are 118.1 and $118.3^{\circ}$ on average, respectively. The $\mathrm{Hg}-\mathrm{Ru}$ and $\mathrm{Hg}-\mathrm{Os}$ distances are 2.6638(3) and 2.6908 (3) $\AA$ which as expected are slightly longer than the reported $\mathrm{Hg}-\mathrm{Fe}$ distance, $2.522 \AA$ [5].

## 3. Experimental

All manipulations were carried out on a standard high-vacuum line or in a dry-box under an inert gas atmosphere [14]. THF and $\mathrm{Et}_{2} \mathrm{O}$ were vacuum distilled into storage bulbs that contained sodium-benzophenone ketyl and were equipped with Kontes Teflon stopcocks. $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ with continuous stirring for 5 days followed by vacuum

Table 2
Atomic coordinates $(\AA)$ and isotropic thermal displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ with ESD's for $[P P N]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$

| Atom | $x$ | $y$ | $z$ | B |
| :---: | :---: | :---: | :---: | :---: |
| Hg | 0.000 | 0.000 | 0.000 | 3.183(4) |
| Ru | 0.09323(2) | 0.10920(2) | $0.11725(2)$ | 2.556 (6) |
| O1 | -0.2065(2) | 0.2180(2) | 0.2566(2) | 5.11(7) |
| O2 | -0.0171(3) | 0.2903(2) | 0.0221(2) | 6.09(8) |
| O3 | 0.1020(3) | 0.1027(3) | 0.3020(2) | 6.23(9) |
| O4 | -0.3316(3) | -0.1015(3) | -0.0337(3) | 6.3 (1) |
| C1 | -0.1623(3) | 0.1786(3) | 0.2042(3) | 3.29 (8) |
| C2 | -0.0442(3) | 0.2216(3) | 0.0572(3) | 3.58(8) |
| C3 | 0.0300(3) | 0.1049(3) | 0.2312(3) | 3.81(9) |
| C4 | -0.2399(3) | -0.0246(3) | 0.0224(3) | 3.81(9) |
| P1 | -0.37596 (7) | 0.31101(6) | -0.29774(6) | 2.08(2) |
| P2 | -0.14563(7) | 0.36599 (6) | -0.33213(6) | 2.10(2) |
| N1 | -0.2368(2) | 0.3430(2) | -0.2732(2) | 2.52(6) |
| N2 | 1.2088(4) | -0.7451(4) | -1.2986(4) | 8.1(2) |
| C5A | -0.3942(3) | 0.4339(2) | -0.2263(2) | 2.43(7) |
| C5B | -0.4936(3) | 0.4200(3) | -0.2000(3) | 4.2(1) |
| C5C | -0.5075(4) | $0.5144(4)$ | -0.1465(4) | 5.7(1) |
| C5D | -0.4226(4) | 0.6225(3) | -0.1194(4) | 5.1(1) |
| C5E | -0.3237(4) | 0.6372(3) | -0.1469(3) | 4.5(1) |
| C5F | -0.3085(3) | 0.5430(3) | -0.1998(3) | 3.43(8) |
| C6A | -0.4728(3) | 0.2584(3) | -0.4403(2) | 2.42(7) |
| C6B | -0.4850(3) | 0.1559(3) | -0.5102(3) | 3.17(8) |
| C6C | -0.5498(4) | 0.1169(4) | -0.6206(3) | 4.2(1) |
| C6D | -0.6032(4) | $0.1792(4)$ | -0.6625(3) | 4.8(1) |
| C6E | -0.5927(4) | 0.2801(4) | -0.5948(3) | 4.8(1) |
| C6F | -0.5277(3) | 0.3205(3) | -0.4830(3) | 3.60 (8) |
| C7A | -0.4319(3) | 0.2021(2) | -0.2476(2) | 2.37(7) |
| C7B | -0.3498(3) | 0.1916 (3) | -0.1644(2) | 2.64(7) |
| C7C | -0.3924(3) | 0.1154(3) | -0.1178(3) | 3.51(9) |
| C7D | -0.5151(4) | 0.0496(3) | -0.1540(3) | 4.2(1) |
| C7E | -0.5963(3) | 0.0592(3) | -0.2370(3) | 4.3(1) |
| C7F | -0.5551(3) | 0.1350(3) | -0.2839(3) | 3.33(8) |
| C8A | -0.1432(3) | 0.2354(3) | -0.4068(2) | 2.54(7) |
| C8B | -0.1957(3) | 0.1370(3) | -0.3880(3) | 2.97 (8) |
| C8C | -0.1884(3) | 0.0377(3) | -0.4399(3) | 3.74(9) |
| C8D | -0.1300(3) | 0.0357(3) | -0.5102(3) | 4.06(9) |
| C8E | -0.0780(3) | 0.1316 (3) | -0.5289(3) | 4.20 (9) |
| C8F | -0.0844(3) | 0.2322(3) | -0.4784(3) | $3.38(8)$ |
| C9A | 0.0054(3) | 0.4524(2) | -0.2272(2) | $2.22(6)$ |
| C9B | 0.1011(3) | 0.5185(3) | -0.2461(3) | $3.38(8)$ |
| C9C | 0.2170(3) | 0.5766(3) | -0.1648(3) | 3.75 (9) |
| C9D | 0.2387(3) | 0.5668(3) | -0.0652(3) | $3.25(8)$ |
| C9E | 0.1447(3) | 0.5020(3) | -0.0458(3) | $3.50(9)$ |
| C9F | 0.0275(3) | 0.4449(3) | -0.1258(3) | $3.15(8)$ |
| C10A | -0.1772(3) | 0.4358(3) | -0.4243(2) | 2.45(7) |
| C10B | -0.2552(3) | 0.3707(3) | -0.5337(2) | 2.95 (8) |
| C10C | -0.2935(3) | 0.4238(3) | -0.6008(3) | 3.96 (9) |
| C10D | -0.2531(3) | 0.5404(3) | -0.5615(3) | 4.52(9) |
| C10E | -0.1754(4) | 0.6059(3) | -0.4535(3) | 4.12(9) |
| C10F | -0.1383(3) | 0.5541(3) | -0.3841(3) | 3.14(8) |
| C11 | $1.1670(4)$ | -0.7675(4) | -1.2379(4) | 5.6(1) |
| C12 | 1.1116(6) | -0.7979(4) | -1.1648(4) | 6.9(2) |
| H5B | -0.5530 | 0.3452 | -0.2185 | 5.4 |
| H5C | -0.5765 | 0.5042 | -0.1283 | 7.4 |
| H5D | -0.4320 | 0.6871 | -0.0817 | 6.7 |
| H5E | -0.2655 | 0.7121 | -0.1295 | 5.9 |
| H5F | -0.2393 | 0.5532 | -0.2177 | 4.5 |
| H6B | -0.4482 | 0.1124 | -0.4813 | 4.1 |
| H6C | -0.5576 | 0.0468 | -0.6678 | 5.4 |
| H6D | -0.6477 | 0.1521 | -0.7388 | 6.3 |
| H6E | -0.6300 | 0.3226 | -0.6245 | 6.3 |
| H6F | -0.5210 | 0.3902 | -0.4361 | 4.7 |

Table 2 (Continued)

| Atom | $x$ | $y$ |  | $z$ |
| :--- | ---: | ---: | :--- | :--- |
| H7B | -0.2646 | 0.2365 | -0.1395 | 3.4 |
| H7C | -0.3362 | 0.1087 | -0.0604 | 4.6 |
| H7D | -0.5439 | -0.0025 | -0.1218 | 5.4 |
| H7E | -0.6813 | 0.0134 | -0.2622 | 5.7 |
| H7F | -0.6118 | 0.1409 | -0.3413 | 4.3 |
| H8B | -0.2363 | 0.1382 | -0.3395 | 3.9 |
| H8C | -0.2238 | -0.0292 | -0.4268 | 4.9 |
| H8D | -0.1257 | -0.0329 | -0.5460 | 5.3 |
| H8E | -0.0370 | 0.1294 | -0.5770 | 5.5 |
| H8F | -0.0490 | 0.2984 | -0.4925 | 4.4 |
| H9B | 0.0870 | 0.5238 | -0.3153 | 4.4 |
| H9C | 0.2820 | 0.6235 | -0.1775 | 4.9 |
| H9D | 0.3191 | 0.6050 | -0.0100 | 4.2 |
| H9E | 0.1598 | 0.4960 | 0.0233 | 4.5 |
| H9F | -0.0377 | 0.4007 | -0.1114 | 4.1 |
| H10B | -0.2819 | 0.2900 | -0.5620 | 3.8 |
| H10C | -0.3483 | 0.3791 | -0.6747 | 5.1 |
| H10D | -0.2784 | 0.5762 | -0.6086 | 5.9 |
| H10E | -0.1474 | 0.6867 | -0.4266 | 5.4 |
| H10F | -0.0865 | 0.5991 | -0.3094 | 4.1 |

Positional parameters for hydrogen atoms were calculated based on an average $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ and were not refined. Anisotropically refined atoms are given in the form as: $\exp \left[-\left(b_{11} h_{2}+b_{22} K_{2}+\right.\right.$ $\left.\left.b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)\right]$.
distillation into storage bulbs. $\quad[\mathrm{PPN}] \mathrm{Cl} \quad(\mathrm{Bis}(\mathrm{t}-$ riphenylphosphino)iminium chloride, Aldrich) and $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right] \mathrm{Br}$ were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane and dried at $100^{\circ} \mathrm{C}$ under vacuum. Potassium and sodium salts of $\left[\mathrm{M}(\mathrm{CO})_{4}\right]^{2-}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ were prepared by literature methods with minor modifications [15]. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN and by Oneida Research Services, Whitesboro, NY.

### 3.1. Preparation of $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$

In a dry-box $146.9 \mathrm{mg}(0.608 \mathrm{mmol})$ of $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ and $82.5 \mathrm{mg}(0.304 \mathrm{mmol})$ of $\mathrm{HgCl}_{2}$ were placed in a reaction flask along with a Teflon-coated stir bar. The reaction flask was attached to a vacuum extractor, sealed, and evacuated on the vacuum line. THF ( 20 ml ) was condensed into the reaction flask. The contents was stirred for 30 min at r.t., during which time a yellow solution and a white precipitate were produced. The white precipitate was collected by filtration and was identified as KCl by powder X-ray diffraction. THF was removed under vacuum to give an orange-yellow solid, which was washed in ether to give a yellow powder, 155.7 mg ( $84 \%$ yield). IR (THF, $v_{\mathrm{CO}}$ ): 1974(vw), 1939(vs), 1862(s, br), 1824(m, br) $\mathrm{cm}^{-1}$.

In a dry-box, $69.6 \mathrm{mg} \quad(0.113 \mathrm{mmol})$ of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$ and $129.5 \mathrm{mg}(0.226 \mathrm{mmol})$ of $[\mathrm{PPN}] \mathrm{Cl}$ were placed in a flask with a stir-bar. The flask

Table 3
Atomic coordinates $(\AA$ ) and isotropic thermal displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ with ESD's for $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$

| Atoms | $x$ | $y$ | $z$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| Hg | 0.1986(1) | $-0.2428(1)$ | $-0.2504(1)$ | 35(1) |
| $\mathrm{Os}(1)$ | -0.0078(1) | $-0.1639(1)$ | $-0.1565(1)$ | 29(1) |
| $\mathrm{Os}(2)$ | 0.3990(1) | $-0.3335(1)$ | $-0.3456(1)$ | 27(1) |
| $\mathrm{P}(1)$ | -0.1055(2) | -0.2995(2) | 0.2196(2) | 30(1) |
| $\mathrm{P}(2)$ | $0.6399(2)$ | 0.2103(2) | $-0.2810(2)$ | 31(1) |
| $\mathrm{O}(1)$ | -0.2469(6) | $-0.0528(5)$ | $-0.0717(5)$ | 57(2) |
| $\mathrm{O}(2)$ | 0.1479(7) | $-0.0227(5)$ | $-0.1033(6)$ | 66(2) |
| $\mathrm{O}(3)$ | $-0.1193(7)$ | $-0.1692(6)$ | $-0.3365(4)$ | 56(2) |
| $\mathrm{O}(4)$ | 0.0264(6) | $-0.3698(5)$ | -0.0443 (5) | 49(2) |
| $\mathrm{O}(5)$ | 0.6094(6) | $-0.4656(6)$ | $-0.4478(6)$ | 66(2) |
| $\mathrm{O}(6)$ | 0.3937(6) | $-0.1347(4)$ | $-0.4652(5)$ | 48(2) |
| $\mathrm{O}(7)$ | 0.2117(6) | $-0.4502(5)$ | $-0.3921(5)$ | 49(2) |
| $\mathrm{O}(8)$ | 0.5121(8) | $-0.3427(6)$ | $-0.1641(5)$ | 68(2) |
| C(1) | -0.1563(8) | -0.0942(6) | $-0.1031(6)$ | 33(2) |
| C(2) | 0.0897(9) | $-0.0762(6)$ | $-0.1248(6)$ | 44(2) |
| C(3) | -0.0735(8) | $-0.1672(6)$ | $-0.2701(6)$ | 38(2) |
| C(4) | $0.0165(8)$ | $-0.2931(6)$ | $-0.877(5)$ | 32(2) |
| C(5) | 0.5308(9) | $-0.4152(6)$ | $-0.4072(6)$ | 41(2) |
| C(6) | $0.3945(7)$ | $-0.2070(6)$ | $-0.4187(6)$ | 32(2) |
| C(7) | 0.2842(8) | $-0.4066(6)$ | $-0.3724(5)$ | 32(2) |
| C(8) | 0.4678(8) | $-0.3401(7)$ | $-0.2321(7)$ | 43(2) |
| C(9A) | -0.0086(7) | $-0.4105(6)$ | 0.2640(6) | 33(2) |
| C(9B) | $0.0257(9)$ | $-0.4929(6)$ | 0.2120(7) | 46(2) |
| C(9C) | $0.1095(10)$ | $-0.5755(7)$ | 0.2433(8) | 60(3) |
| C(9D) | $0.1542(10)$ | $-0.5757(8)$ | 0.3259(9) | 67(3) |
| C(9E) | $0.1202(10)$ | $-0.4947(9)$ | 0.3775 (8) | 63(3) |
| C(9F) | 0.0393(9) | $-0.4112(7)$ | 0.3473 (7) | 48(2) |
| $\mathrm{C}(10 \mathrm{~A})$ | $-0.2072(7)$ | $-0.3315(6)$ | 0.1480(5) | 29(2) |
| $\mathrm{C}(10 \mathrm{~B})$ | -0.2314(8) | $-0.2748(7)$ | 0.0657(6) | 40(2) |
| $\mathrm{C}(10 \mathrm{C})$ | $-0.3167(9)$ | $-0.2966(8)$ | 0.0132(6) | 46(2) |
| $\mathrm{C}(10 \mathrm{D})$ | $-0.3774(9)$ | $-0.3727(7)$ | 0.0427(6) | 43(2) |
| C(10E) | $-0.3530(8)$ | $-0.4295(7)$ | 0.1253(6) | 41(2) |
| C(10F) | -0.2675(8) | $-0.4095(6)$ | 0.1783(6) | 36(2) |
| $\mathrm{C}(11 \mathrm{~A})$ | -0.1902(7) | $-0.2318(6)$ | $0.3115(5)$ | 28(2) |
| $\mathrm{C}(11 \mathrm{~B})$ | $-0.2317(8)$ | $-0.2811(7)$ | 0.3928(6) | 40(2) |
| $\mathrm{C}(11 \mathrm{C})$ | -0.2988(9) | $-0.2265(8)$ | 0.4604(7) | 48(2) |
| C(11D) | -0.3283(9) | $-0.1230(8)$ | $0.4465(7)$ | 47(2) |
| C(11E) | -0.2917(9) | $-0.0740(7)$ | 0.3660(7) | 50(2) |
| $\mathrm{C}(11 \mathrm{~F})$ | -0.2218(8) | $-0.1277(7)$ | 0.2979 (6) | 44(2) |
| $\mathrm{C}(12)$ | $-0.0130(8)$ | $-0.2219(7)$ | 0.1531(6) | 43(2) |
| $\mathrm{C}(13 \mathrm{~A})$ | 0.7761(7) | 0.1793(6) | $-0.3510(5)$ | 29(2) |
| C(13B) | 0.8664(7) | 0.0970(6) | $-0.3205(6)$ | 33(2) |
| $\mathrm{C}(13 \mathrm{C})$ | 0.9718(8) | 0.0740(6) | $-0.3730(6)$ | 37(2) |
| $\mathrm{C}(13 \mathrm{D})$ | $0.9946(8)$ | $0.1291(7)$ | $-0.4557(6)$ | 42(2) |
| C(13E) | 0.9078(9) | $0.2101(7)$ | $-0.4848(6)$ | 43(2) |
| $\mathrm{C}(13 \mathrm{~F})$ | 0.8007(8) | 0.2340(7) | $-0.4328(5)$ | 35(2) |
| $\mathrm{C}(14 \mathrm{~A})$ | 0.5778(8) | 0.0986(6) | $-0.2443(6)$ | 36(2) |
| C(14B) | 0.6139(8) | $0.0109(7)$ | $-0.2913(7)$ | 44(2) |
| $\mathrm{C}(14 \mathrm{C})$ | $0.5639(9)$ | $-0.0716(7)$ | $-0.2618(8)$ | 53(3) |
| C(14D) | $0.4785(10)$ | $-0.0683(8)$ | $-0.1885(8)$ | 62(3) |
| C(14E) | $0.4419(9)$ | 0.0189(8) | $-0.1413(8)$ | 57(3) |
| $\mathrm{C}(14 \mathrm{~F})$ | 0.4919 (8) | 0.1017(7) | $-0.1704(6)$ | 43(2) |
| $\mathrm{C}(15 \mathrm{~A})$ | 0.6657(7) | 0.2678(6) | $-0.1817(5)$ | 28(2) |
| C(15B) | 0.6904(8) | 0.2099(6) | $-0.0998(6)$ | 36(2) |
| $\mathrm{C}(15 \mathrm{C})$ | 0.7133(9) | 0.2546(8) | $-0.0254(7)$ | 49(2) |
| C(15D) | $0.7135(9)$ | 0.3556(8) | $-0.0318(7)$ | 51(3) |
| $\mathrm{C}(15 \mathrm{E})$ | $0.6914(9)$ | 0.4147(7) | $-0.1139(8)$ | 52(3) |
| $\mathrm{C}(15 \mathrm{~F})$ | 0.6681(8) | 0.3702(6) | $-0.1885(6)$ | 40(2) |
| $\mathrm{C}(16)$ | $0.5338(9)$ | 0.2982(7) | $-0.3454(7)$ | 49(2) |
| $\mathrm{H}(9 \mathrm{~B})$ | $-0.0069(9)$ | $-0.4930(6)$ | $0.1567(7)$ | 70 |
| H(9C) | 0.1349 (10) | $-0.6304(7)$ | 0.2082(8) | 89 |

Table 3 (Continued)

| Atoms | $x$ | $y$ | $z$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| H(9D) | 0.2087(10) | $-0.6318(8)$ | 0.3473(9) | 101 |
| H(9E) | 0.1520(10) | -0.4960(9) | 0.4334(8) | 94 |
| H(9F) | 0.0169(9) | $-0.3558(7)$ | 0.3822(7) | 72 |
| H(10B) | -0.1910(8) | $-0.2223(7)$ | 0.0454(6) | 60 |
| H(10C) | -0.3322(9) | -0.2589(8) | -0.0423(6) | 69 |
| H(10D) | -0.4346(9) | $-0.3865(7)$ | $0.0079(6)$ | 65 |
| H(10E) | -0.3942(8) | $-0.4815(7)$ | 0.1456(6) | 62 |
| $\mathrm{H}(10 \mathrm{~F})$ | -0.2513(8) | -0.4481(6) | 0.2333(6) | 54 |
| H(11B) | -0.2138(8) | $-0.3514(7)$ | $0.4014(6)$ | 59 |
| H(11C) | -0.3243(9) | -0.2596(8) | 0.5154(7) | 72 |
| H(11D) | -0.3736(9) | -0.0860(8) | 0.4924(7) | 70 |
| H(11E) | -0.3139(9) | $-0.0040(7)$ | 0.3567(7) | 75 |
| $\mathrm{H}(11 \mathrm{~F})$ | -0.1963(8) | -0.0939(7) | 0.2433(6) | 66 |
| $\mathrm{H}(12 \mathrm{~A})$ | -0.0623(8) | $-0.1613(7)$ | 0.1281(6) | 65 |
| H(12B) | 0.0319(8) | $-0.2583(7)$ | 0.1040(6) | 65 |
| H(12C) | 0.412(8) | -0.2044(7) | 0.1916(6) | 65 |
| H(13B) | 0.8532(7) | 0.594(6) | $-0.2650(6)$ | 49 |
| H(13C) | 0.10301(8) | 0.0201(6) | $-0.3529(6)$ | 56 |
| H(13D) | 1.0668(8) | 0.1120(7) | -0.4912(6) | 63 |
| H(13E) | 0.9222(9) | 0.2483(7) | $-0.5397(6)$ | 65 |
| $\mathrm{H}(13 \mathrm{~F})$ | 0.7434(8) | 0.2884(7) | $-0.4532(5)$ | 52 |
| H(14B) | 0.6707(8) | 0.0091(7) | -0.3417(7) | 65 |
| H(14C) | 0.5880(9) | -0.1306(7) | -0.2917(8) | 79 |
| H(14D) | $0.4444(10)$ | $-0.1249(8)$ | -0.1698(8) | 93 |
| H(14E) | 0.3847(9) | 0.0205(8) | -0.0913(8) | 86 |
| $\mathrm{H}(14 \mathrm{~F})$ | 0.4680(8) | $0.1605(7)$ | $-0.1402(6)$ | 65 |
| H(15B) | $0.6915(8)$ | 0.1407(6) | $-0.0952(6)$ | 55 |
| H(15C) | 0.7287(9) | 0.2155(8) | $0.0295(7)$ | 73 |
| H(15D) | 0.7284(9) | 0.3854(8) | 0.0189(7) | 77 |
| H(15E) | 0.6924(9) | 0.4836 (7) | $-0.1184(8)$ | 78 |
| H(15F) | 0.6541(8) | 0.4092(6) | $-0.2437(6)$ | 59 |
| H(16A) | 0.4600 (9) | 0.3151(7) | $-0.3077(7)$ | 73 |
| H(16B) | 0.5194(9) | $0.2680(7)$ | $-0.3984(7)$ | 73 |
| H(16C) | 0.5651(9) | $0.3585(7)$ | $-0.3647(7)$ | 73 |

Positional parameters for hydrogen atoms were calculated based on an average $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and were not refined. Anisotropically refined atoms are given in the form as: $\exp (-$ $2 \pi^{2}\left[h^{2}\left(a^{*}\right)^{2} U(11)+K^{2}\left(b^{*}\right)^{2} U(22)+l^{2}\left(c^{*}\right)^{2} U(33)+2 k l b^{*} c^{*} U(23)\right.$
$\left.\left.+2 h l a^{*} c^{*} U(13)+2 h k a^{*} b^{*} U(12)\right]\right) . a^{*}, b^{*}$, and $c^{*}$ are reciprocal lattice parameters.
was attached to a vacuum extractor and evacuated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was condensed into the reaction flask. An orange-yellow solution and a white precipitate were obtained after 20 min of stirring. The precipitate was isolated by filtration and identified as KCl by X-ray diffraction. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum to give an orange-yellow powder, which was washed in ether to yield $136.1 \mathrm{mg}(75 \%$ yield) of $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v_{\mathrm{CO}}\right): 2018(\mathrm{vw})$, 1969(w), 1934(s), 1853(vs, br) $\mathrm{cm}^{-1}$. Anal. Found: C, $60.6 ; \quad \mathrm{H}, \quad 4.22 \% . \quad \mathrm{C}_{80} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{HgFe}_{2} \quad\left([\mathrm{PPN}]_{2}[\mathrm{Hg}-\right.$ $\left.\left.\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}\right]\right) \mathrm{Calc}$.: C, 59.6 ; H, 3.75\%.

### 3.2. Preparation of $[P \mathrm{PN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$

This compound was prepared and isolated by a procedure similar to that described above. The reaction

Table 4
Selected bond distances ( $\AA$ ) and angles ( ${ }^{\circ}$ ) with ESD's for $\left[\mathrm{PPN}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right.$

| $\mathrm{Hg}-\mathrm{Ru}$ | $2.6638(3)$ | $\mathrm{Ru}-\mathrm{C} 1$ | $1.897(4)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Ru}-\mathrm{C} 2$ | $1.913(4)$ | $\mathrm{Ru}-\mathrm{C} 3$ | $1.908(4)$ |
| $\mathrm{Ru}-\mathrm{C} 4$ | $1.906(4)$ | $\mathrm{O} 1-\mathrm{C} 1$ | $1.154(5)$ |
| $\mathrm{O} 2-\mathrm{C} 2$ | $1.147(5)$ | $\mathrm{O} 3-\mathrm{C} 3$ | $1.148(5)$ |
| $\mathrm{O} 4-\mathrm{C} 4$ | $1.146(5)$ | $\mathrm{P} 1-\mathrm{N} 1$ | $1.576(3)$ |
| $\mathrm{Hg}-\mathrm{Ru}-\mathrm{C} 1$ | $176.0(1)$ | $\mathrm{Hg}-\mathrm{Ru}-\mathrm{C} 2$ | $84.8(1)$ |
| $\mathrm{Hg}-\mathrm{Ru}-\mathrm{C} 3$ | $80.1(1)$ | $\mathrm{Hg}-\mathrm{Ru}-\mathrm{C} 4$ | $81.9(1)$ |
| $\mathrm{Ru}-\mathrm{C} 1-\mathrm{O} 1$ | $178.2(4)$ | $\mathrm{Ru}-\mathrm{C} 2-\mathrm{O} 2$ | $178.0(4)$ |
| $\mathrm{Ru}-\mathrm{C} 3-\mathrm{O} 3$ | $177.7(4)$ | $\mathrm{Ru}-\mathrm{C} 4-\mathrm{O} 4$ | $176.3(4)$ |
| $\mathrm{C} 1-\mathrm{Ru}-\mathrm{C} 2$ | $99.2(2)$ | $\mathrm{C} 1-\mathrm{Ru}-\mathrm{C} 3$ | $97.9(2)$ |
| $\mathrm{C} 1-\mathrm{Ru}-\mathrm{C} 4$ | $96.3(2)$ | $\mathrm{C} 2-\mathrm{Ru}-\mathrm{C} 3$ | $118.0(2)$ |
| $\mathrm{C} 2-\mathrm{Ru}-\mathrm{C} 4$ | $115.4(2)$ | $\mathrm{C} 3-\mathrm{Ru}-\mathrm{C} 4$ | $121.1(2)$ |

of $188.4 \mathrm{mg}(0.694 \mathrm{mmol})$ of $\mathrm{K}_{2}\left[\mathrm{Ru}(\mathrm{CO})_{4}\right]$ with 87.8 mg ( 0.323 mmol ) of $\mathrm{HgCl}_{2}$ in THF for 2 h produced $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right], 207.2 \mathrm{mg}$ (91\% yield). IR (THF, $\left.v_{\mathrm{CO}}\right): 1981(\mathrm{vw}), 1952(\mathrm{vs}), 1874(\mathrm{~s}), 1834(\mathrm{~m}, \mathrm{br}) \mathrm{cm}^{-1}$. Metathesis with $[\mathrm{PPN}] \mathrm{Cl}$ produced $[\mathrm{PPN}]_{2}[\mathrm{Hg}\{\mathrm{Ru}-$ $\left.\left.(\mathrm{CO})_{4}\right\}_{2}\right]$ ( $78 \%$ Yield). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, v_{\mathrm{CO}}\right)$ : 2034(vw), 2008(vw), 1980(w), 1949(s), 1867(vs) $\mathrm{cm}^{-1}$. Anal. Found: C, $56.7 ; \mathrm{H}, 3.56 \% . \quad \mathrm{C}_{84} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{8} \mathrm{HgRu}_{2}$ $\left([\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right)$ Calc.: C, $56.5 ; \mathrm{H}$, $3.72 \%$.

### 3.3. Preparation of $\left[\mathrm{Ph}_{3} \mathrm{MeP}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]\right.$

This compound was prepared and isolated by a procedure similar to that described above. The reaction of $189.3 \mathrm{mg}(0.497 \mathrm{mmol})$ of $\mathrm{K}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]$ with 67.5 mg ( 0.249 mmol ) of $\mathrm{HgCl}_{2}$ in THF for 3 h at $60^{\circ} \mathrm{C}$ produced $190.8 \mathrm{mg}\left(87 \%\right.$ yield) of $\mathrm{K}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. IR (THF, $v_{\mathrm{CO}}$ ): 1983(vw), 1956(vs), 1872(s), 1834(m, br) $\mathrm{cm}^{-1}$. Metathesis with $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right] \mathrm{Br}$ produced $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right] \quad(84 \%$ Yield $)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $v_{\mathrm{CO}}$ ): 2043(vw), 1983(m), 1955(s), 1863(vs) $\mathrm{cm}^{-1}$. Anal. Found: C, $40.6 ; \quad \mathrm{H}, \quad 2.60 \%$. $\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{P}_{2} \mathrm{O}_{8} \mathrm{HgOs}_{2}$ $\left(\left[\mathrm{Ph}_{3} \mathrm{MeP}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]\right)\right.$ Calc.: C, $40.6 ; \mathrm{H}, 2.67 \%$.

### 3.4. Preparation of $\left[\mathrm{Hg}\left\{\mathrm{M}(\mathrm{CO})_{4}\right\}\right]_{x}$

Reaction of $214.5 \mathrm{mg}(1.0 \mathrm{mmol})$ of $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ with $277.0 \mathrm{mg}(1.0 \mathrm{mmol})$ of $\mathrm{HgCl}_{2}$ in THF for 1 h at r.t. produced yellow solution with yellow precipitate. The precipitate was isolated by filtration and washed in water and THF. The yellow precipitate, $346.8 \mathrm{mg}(94 \%$ yield) was identified to be $\left[\mathrm{HgFe}(\mathrm{CO})_{4}\right]_{x}$ by nujol mull IR spectroscopy. IR (nujol mull, $v_{\mathrm{CO}}$ ): 2058(sbr, sh), 2045(s), 2015(m), 1979(m), 1949(s), 1916(vs) $\mathrm{cm}^{-1}$.
$\left[\mathrm{HgRu}(\mathrm{CO})_{4}\right]_{x}$ and $\left[\mathrm{HgOs}(\mathrm{CO})_{4}\right]_{x}$ were prepared by the same method as described above, except that 0.686 mmol of $\mathrm{Na}_{2}\left[\mathrm{Ru}(\mathrm{CO})_{4}\right]$ and 0.686 mmol of $\mathrm{HgCl}_{2}$ were used to prepare $\left[\mathrm{HgRu}(\mathrm{CO})_{4}\right]_{x}$; and 0.3 mmol of $\mathrm{Na}_{2}\left[\mathrm{Os}(\mathrm{CO})_{4}\right]$ and 0.3 mmol of $\mathrm{HgCl}_{2}$ were used to

Table 5
Selected bond distances ( $\AA$ ) and angles ( ${ }^{\circ}$ ) with ESD's for $\left[\mathrm{Ph}_{3} \mathrm{MeP}_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]\right.$

| $\mathrm{Hg}-\mathrm{Os}(1)$ | $2.6871(8)$ | $\mathrm{Hg}-\mathrm{Os}(2)$ | $2.6945(8)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Os}(1)-\mathrm{C}(1)$ | $1.902(8)$ | $\mathrm{Os}(1)-\mathrm{C}(2)$ | $1.905(10)$ |
| $\mathrm{Os}(1)-\mathrm{C}(3)$ | $1.911(9)$ | $\mathrm{Os}(1)-\mathrm{C}(4)$ | $1.911(8)$ |
| $\mathrm{Os}(2)-\mathrm{C}(5)$ | $1.888(9)$ | $\mathrm{Os}(2)-\mathrm{C}(6)$ | $1.918(9)$ |
| $\mathrm{Os}(2)-\mathrm{C}(7)$ | $1.889(9)$ | $\mathrm{Os}(2)-\mathrm{C}(8)$ | $1.905(10)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.149(10)$ | $\mathrm{O}(2)-\mathrm{C}(2)$ | $1.162(11)$ |
| $\mathrm{O}(3)-\mathrm{C}(3)$ | $1.161(11)$ | $\mathrm{O}(4)-\mathrm{C}(4)$ | $1.150(10)$ |
| $\mathrm{O}(5)-\mathrm{C}(5)$ | $1.165(11)$ | $\mathrm{O}(6)-\mathrm{C}(6)$ | $1.132(10)$ |
| $\mathrm{O}(7)-\mathrm{C}(7)$ | $1.184(10)$ | $\mathrm{O}(8)-\mathrm{C}(8)$ | $1.162(11)$ |
| $\mathrm{Os}(1)-\mathrm{Hg}-\mathrm{Os}(2)$ | $175.96(2)$ | $\mathrm{Hg}-\mathrm{Os}(1)-\mathrm{C}(1)$ | $172.3(2)$ |
| $\mathrm{Hg}-\mathrm{Os}(1)-\mathrm{C}(2)$ | $81.3(3)$ | $\mathrm{Hg}-\mathrm{Os}(1)-\mathrm{C}(3)$ | $83.3(3)$ |
| $\mathrm{Hg}-\mathrm{Os}(1)-\mathrm{C}(4)$ | $83.4(3)$ | $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{C}(5)$ | $171.5(3)$ |
| $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{C}(6)$ | $86.8(2)$ | $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{C}(7)$ | $77.7(2)$ |
| $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{C}(8)$ | $83.7(3)$ | $\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{O}(1)$ | $178.9(8)$ |
| $\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ | $178.3(9)$ | $\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{O}(3)$ | $176.3(8)$ |
| $\mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{O}(4)$ | $177.1(8)$ | $\mathrm{Os}(2)-\mathrm{C}(5)-\mathrm{O}(5)$ | $177.4(9)$ |
| $\mathrm{Os}(2)-\mathrm{C}(6)-\mathrm{O}(6)$ | $176.9(7)$ | $\mathrm{Os}(2)-\mathrm{C}(7)-\mathrm{O}(7)$ | $177.5(7)$ |
| $\mathrm{Os}(2)-\mathrm{C}(8)-\mathrm{O}(8)$ | $178.1(9)$ | $\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(2)$ | $97.1(4)$ |
|  |  |  |  |
| $\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(3)$ | $92.1(4)$ | $\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(4)$ | $104.0(3)$ |
| $\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(3)$ | $129.2(4)$ | $\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(4)$ | $113.4(3)$ |
| $\mathrm{C}(4)-\mathrm{Os}(1)-\mathrm{C}(3)$ | $112.4(3)$ | $\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(6)$ | $100.7(3)$ |
| $\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(7)$ | $95.4(4)$ | $\mathrm{C}(5)-\mathrm{Os}(2)-\mathrm{C}(8)$ | $96.7(4)$ |
| $\mathrm{C}(6)-\mathrm{Os}(2)-\mathrm{C}(7)$ | $113.6(3)$ | $\mathrm{C}(6)-\mathrm{Os}(2)-\mathrm{C}(8)$ | $114.3(4)$ |
| $\mathrm{C}(7)-\mathrm{Os}(2)-\mathrm{C}(8)$ | $127.1(4)$ |  |  |
|  |  |  |  |

prepare $\left[\mathrm{HgOs}(\mathrm{CO})_{4}\right]_{x} .187 .8 \mathrm{mg}(66.2 \%$ yield $)$ of a light brown precipitate of $\left[\mathrm{HgRu}(\mathrm{CO})_{4}\right]_{x}$ and 77.0 mg $(51.0 \%)$ of a light brown precipitate of $\left[\mathrm{HgOs}(\mathrm{CO})_{4}\right]_{x}$ were obtained. The IR (nujol mull, $v_{\mathrm{CO}}$ ) spectrum of $\left[\mathrm{HgRu}(\mathrm{CO})_{4}\right]_{x}: \quad 2069(\mathrm{sbr}, \quad \mathrm{sh}), \quad 2058(\mathrm{~s})$, 2026(m), 2001(m), 1991(m, sh), 1972(s), 1947(vs) $\mathrm{cm}^{-1}$. Anal. Found: C, 12.28, $\mathrm{Ru}, 22.93 \% \mathrm{~F}_{4}\left[\mathrm{C}_{4} \mathrm{HgRu}\right]_{x}$ Calc.: C, $11.61 ; \mathrm{Ru}, 24.43 \%$. The IR (nujol mull, $v_{\mathrm{CO}}$ ) spectrum of $\left[\mathrm{HgOs}(\mathrm{CO})_{4}\right]_{x}: ~ 2072(\mathrm{sbr}, \mathrm{sh}), 2061(\mathrm{~s}), \quad 2019(\mathrm{w})$, 1999(m), 1984(m, sh), 1971(vs), 1948(vs) cm ${ }^{-1}$. Anal. Found: C, 9.62, $\mathrm{Hg}, 38.72 \% .\left[\mathrm{C}_{4} \mathrm{O}_{4} \mathrm{HgOs}\right]_{x}$ Calc.: C, $9.55 ; \mathrm{Hg}, 39.90 \%$.

## 3.5. $X$-ray structure determination of $[P P N]_{2}[H g\{R u$ $\left.\left.(\mathrm{CO})_{4}\right\}_{2}\right]$ and $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$

Single crystals were mounted and sealed inside glass capillaries of 0.5 mm diameter. X-ray diffraction data were collected on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. Unit cell parameters were obtained by a least-square refinement of the angular settings from 25 reflections, well distributed in reciprocal space and lying in the $2 \theta$ range of $24-30^{\circ}$. The diffraction data were corrected for Lorentz and polarization effects, decay, and absorption (empirically from $\psi$-scan data). Computations were performed on a VAX station 3100 computer using MOLEN [16] for $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and an IBM compatible PC using SHELXL 93 [17] for
$\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. Structures were solved using the direct method MULTAN 11/82 and difference Fourier synthesis with analytical scattering factors used throughout the structure refinement [18] for $[\mathrm{PPN}]_{2}[\mathrm{Hg}-$ $\left.\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and SHELXS86 [19] for $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}[\mathrm{Hg}-$ $\left.\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. After all of the non-hydrogen atoms were located and refined, hydrogen atoms on the cations were placed at calculated positions by assuming ideal geometries with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ for $[\mathrm{PPN}]_{2}\left[\mathrm{Hg}\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and $0.93 \AA$ for $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}[\mathrm{Hg}-$ $\left.\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. The thermal parameters of the hydrogen atoms were set to $B(\mathrm{H})=1.3 B(\mathrm{C}) \AA^{2}$ for $[\mathrm{PPN}]_{2}[\mathrm{Hg}-$ $\left.\left\{\mathrm{Ru}(\mathrm{CO})_{4}\right\}_{2}\right]$ and $B(\mathrm{H})=1.5 B(\mathrm{C}) \AA^{2}$ for $\left[\mathrm{Ph}_{3} \mathrm{MeP}\right]_{2}$ $\left[\mathrm{Hg}\left\{\mathrm{Os}(\mathrm{CO})_{4}\right\}_{2}\right]$. Then, with the positional and thermal parameters of all the hydrogen atoms fixed, the non-hydrogen atoms were refined anisotropically. New hydrogen positions were calculated, and this procedure was repeated until the parameters of the non-hydrogen atoms were refined to convergence (final shift/error $\leq$ 0.03).

## Acknowledgements

This work was supported by the National Science Foundation through Grant CHE 94-0123 and CHE 97-00394.

## References

[1] S.V. Dighe, M. Orchin, J. Am. Chem. Soc. 86 (1964) 3895.
[2] J.M. Burlitch, A. Ferrari, Inorg. Chem. 9 (1970) 563.
[3] M.L. Katcher, G.L. Simon, Inorg. Chem. 11 (1972) 1651.
[4] H. Behrens, H.D. Feilner, E. Lindner, D. Uhlig, Z. Naturforsch. b26 (1971) 990.
[5] B.A. Sosinsky, R.G. Shong, B.J. Fitzgerald, N. Norem, C. O'Rourke, Inorg. Chem. 22 (1983) 3124.
[6] P. Braunstein, M. Knorr, A. Tiripicchio, M.T. Camellin, Inorg. Chem. 31 (1992) 3685.
[7] M.N. Bochkarev, N.L. Ermolaev, L.N. Zakharov, Yu. N. Saf'yanov, G.A. Razuvaev, Yu. T. Struchkov, J. Organomet. Chem. 270 (1984) 289.
[8] N.K. Bhattacharyya, T.J. Coffy, W. Quintana, et al., Organometallics 9 (1990) 2368.
[9] H. Hock, H. Stuhlmann, Ber. 62 (1929) 431.
[10] D.M. Adams, D.J. Cook, R.D.W. Kemmitt, Nature 205 (1965) 589.
[11] W. Beck, K. Noack, J. Organomet. Chem. 10 (1967) 307.
[12] T. Takano, Y. Sasaki, Bull. Chem. Soc. Jpn. 44 (1971) 431.
[13] K.E. Inkrott, S.G. Shore, Inorg. Chem. 18 (1979) 2817.
[14] D.F. Shriver, M.A. Drezdon, The Manipulation of Air-Sensitive Compounds, 2nd ed, Wiley, New York, 1969.
[15] R.M. Sweet, C.J. Fritchie, R.A. Shunn, Inorg. Chem. 6 (1967) 749.
[16] MOLEN, an interactive structure solution procedure was used to process X-ray data, to apply corrections, and to solve and refine structures, Enraf-Nonius, Delft, The Netherlands, 1990.
[17] G.M. Sheldrick, SHELXL 93, Program for the Refinement of Crystal Structure, University of Göttingen, Göttingen, Germany, 1993.
[18] Atomic scattering factors from: International Tables for X-ray Crystallography, Kynoch, Birmingham, UK, 1974, Vol IV.
[19] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.


[^0]:    * Corresponding author. Fax: + 16142921685.

